Module Il Regression Based Learning

1 Introduction

In Figure 1-1 is illustrated the layout of a typical machine learning environment. The three main concepts involved in the
representation of the environment are the data, which in the machine learning jargon is called the training set or training data, a
machine learning algorithms whose task is to derive a model of the data contained in the training set, and the model itself. The training
set is typically in the form of a table with data organized into columns and rows. The data may be labeled or unlabeled depending on
the type of learning used (as supervised or unsupervised learning). The machine learning algorithm component may be one of the
wide range of algorithms available in literature. The model produced by the algorithm is an abstract representation of the data in the
training set. It may be in the form of a mathematical equation or formula or a set of association rules. In this learning module, we
focus on a supervised machine learning methodology called regression. In particular, we would discuss two common regression
learning methods, i.e., linear and logistic regressions at length. We would also introduce the gradient descent algorithm and least mean
square (LMS) rule, two important concepts in error-correction based learning. In the subsequent section, we would introduce the

notation used in these lecture notes whose understanding would be useful in grasping the explanations later.

data
patterns

ML
Algorithm

what is class type of
this new pattern?

(class type of the
new pattern)

Figure 0-1 A Machine learning environment

1.1 The training set and its notation

In most machine learning settings, a training set is a rectangular arrangement or table of values. Each row in the table is called a
training example or a training sample. If the learning mode is supervised, a training example comprises of two components; a vector
of input values called the feature vector; and one or more output values called the target or observed values. Each feature vector is a
finite list of ordered values and each value is a measure of some feature of the pattern under observation. The output value is either a
real number or some discrete value representing a category or class (depending on whether we are dealing with the regression or
classification problem). Table 1 in Figure 0-1 gives an illustration of the structure of the training set.

The training data in Table 1 has m training examples numbered 1 through m. Each training example consists of a x® component,
which represents the feature vector and a y® component, which is the target or output value for that feature vector. The index i
(i =1,2,...,m) in the superscript position denotes the training example number. For example, x® means the feature vector of the

i"training example and y® the output value for the i*'training example. Each feature vector has n values and each value is denoted

by the notation x]-(i) with j = 1,2, ..., n in the subscript position representing the feature number. See Figure 0-1.

Table 0-1

training) @ @ @ i

example# | 1= %2 X3 x| y®
1 xil) xgl) xgl) xr(ll) y@®
2 XF) x§2) x§2) x7(12) y@
3 xf) x§3) x§3) x,(13) y®
m X im) X gm) x ?Em) x7(1m) y (m)

x(l) = x3

)

x® means feature 1 of

feature vector 1, xél) feature
2 of feature vector 1, and so
on. y®means the target or
output for x@

x(3) = x3

o

x® means feature 1 of

feature vector 3, xf) feature
2 of feature vector 3, and so
on.y®means the target or output
for x®.

Figure 0-2 Structure of the training data

In the figure above, the vectors x™ and x® have been given in column notation. When inside text, vectors x© and x® can also
be written as row vectors. For example, x can be written as x® = [x" x{" ... x(P]Tand x® as x@ = [x@ x? .. xP1T . The
row vector notation has the advantage that contrary to column vector notation, vectors in row notation do not stretch over multiple
lines of text and, thus, the required amount of spacing between lines is preserved. Having introduced the basic notation above, we are
now in a position to introduce the formal notation for specifying training the training set in these lecture notes.

A training data in these notes would be formally specified as follows.

= Lett= {(x(i),y(i))}zl, x®eRrr,y®eR

The above notation means, there are m training examples, each comprising of a feature vector of n real values and a target of one
real value. In mathematical jargon, we say the vector x® takes its value from a domain that is the Cartesian product of n real sets. For
y®, we say that it takes its values from the real number set. We would also be using the notation, e.g., we will use X € R™" to

denote the matrix of feature vectors in the training data and Y € R™ the vector of target values. See Figure 0-2.

Table 0-2
training CIENCENNG @ |
oamplett | i %2 %3 il @ LW
1 R S XD | 5O [x° x V] [¥]
x® xP NO) |y |
2 1P xP P | y®? =" . n Y‘{ ; |
(m) (m) (m) (m
I PCRNC RN A i y
m xl(m) e gm) e gm) pe 7(1m) y (m)

Example 1. The Breast Cancer Example

Consider a doctor or consortium of doctors examining patients for the diagnoses of breast cancer. The cancer arises as a tumor but
not all tumors are cancers and the doctor has to carefully examine the physical attributes of a tumor to classify it as either malignant
(cancer-causing and harmless) or benign (non-cancer causing and harmless). Assume that the doctor uses five attributes of the tumor
to decide whether the tumor is malignant or benign. These attributes are the mean radius, mean texture, mean area, mean diameter, and
fractal dimension of a tumor. Assume performing diagnostic on 6 patients, the doctor comes to have the following table of data (Table
2, Figure 0-3) along with the diagnostic. The data has more formally been represented in Table 3. The symbol x; denotes the feature

. T .
“mean radius” of the tumor, x,, the “mean texture”, and so on. x® =[x xPxPxPx{V] =[17.90 104 12.3 26.54 0.12]" is the data

. T .
related to patient 1 represented as a row vector, x® = [x® xPxPxPxP] =[20.56 17.8 13.3 18.6 0.08]" data related to patient 2, and so

on. y® represents the diagnostic result for a patient with “0” denoting a “benign” tumor and “1” a “malignant” tumor. For example,
y@ denotes the diagnostic result for patient 1, which is 0, y® denotes the diagnostic result of patient 3, which is 1 and so on.

We will denote this training data as = = {(x@,y(i))}f:l, x® e RS, y® €{0,1}, which means there are 6 training examples and each

training example is comprised of a feature vector and a target value.

Table 0-3 Table 0-4

patlegt :\:de i?]ns tggﬁ Pe '\:reein pe';/ilr?laer;er dilr:r:(eelrﬁtséii(l)n Diagnostic -er;::]qg:g xl(i) ngi) xéi) xz(;i) X éi) y®
11780 104 123 2654 0.12 benign (x®,y®)| 1790 104 123 2654 012 | 0
2 | 2056 178 133 18.6 0.08 benign «® y)| 2056 178 133 186 008 | 0
3 19.60 21.2 13.0 243 0.08 malignant x®,y®)| 1960 212 130 243 0.08 1
4 15.50 18.6 13.0 234 0.09 benign a® @) 1550 186 130 2 4 009 0
5 7.70 245 47.8 0.00 0.07 malignant =®,y% | 770 245 478 000 0.07 1
° o0 2L 108 al o benign (x®,y©)| 860 201 105 127 013 | 0

Figure 0-3

The notation x® € R5 means that a vector is a 5-tuple of real numbers (a 5-tuple is an ordered list of five values). The expression

y® € {0,1} means that the target value can either be 1 or 0. The vectors can also be listed as column vectors. For example, the

column-format representation of vectors x® and x(® is as below.

15.50
1&60]
x® =113.00]|
[23.40!
1'0.09 |

Example 2: The Shoe Size Example

|

8.60
20.10]

x© =110.50]
[12.70!
013

Assume that you are interested to find whether shoes size of people can be predicted from their heights and chest size. You take

measurement of a few people and record the findings in the following table. The number of training examples (i.e., m) for this

problemis 4, (i.e., m = 4). The number of features, i.e., n, is 4 (i.e.,n = 4).

Table 0-5

Person# Height

Chest

Shoe size

72.1
69.0
70.3

10.0
8.20
85
9.5

The notation for this data would be,

Table 0-6

Training example xfi) xéi)
(x®,y®) 72.1 38.0 10.0
(x®,y®) 69.0 37.6 8.20
(x®,y3) 70.3 37.3 8.5
(x®,y®) 72.2 38.1 9.5

Figure 0-4

= The training set, T = {(x(i),y(i))}?zl, xDeR? yeR
The vectors are,

e

(2) 3) (4)
x<1>=[]2[72.1 L@ = [xl]z 69.0 L@ = [xl]z 70.3] N [xl]:[72.2
xP] 1380 2] 1376] 1373 xP] 1381
= The target values are: y = 10.0, y® =8.20, y® =85,y® =95
= The matrix of feature vectors is:
[x® D
1 2 T
@ @ 72.1 38.0
yr=|% % |_[69.0 376
x® @ || 703 373
72.2 38.1
x£4) x§4)_
= The target vector is
"1 100
Yzly(z) _ (820
y(3) 8.50
el 9.50

Practice Problems

(Problem 1): Write mathematical notation for the training sets in the following tables. List vectors 2" and 4" in each case.

Table 0-7 Table 0-8
xg") xg) xgi) xff) y(i) xgi) xgi) xgi) x‘(:) xgi) xg) y®
xgl) xgl) xgl) xil) y(l) xgl) x;l) xgl) xgl) xgl) xgl) y(l)
x§2) x§2) x§2) xiZ) y(Z) ng) x;Z) ng) xgz) xgz) xgz) y(z)
ng) xg3) x§3) xf) y(3) ng) x;3) xg3) xf) x§3) x?) y(s)
xg4) xgl) x:(;l) xi‘*) y(4) xg‘l) xgl) xg‘l) xg4) xgl) x?) y(4)
NMONN OB O OB B0

(Problem 2): Express the following notation training data in the form of tables.

. —{(x® yON® O g gt y®
@ ©= (O V)),_xO Ry e © 7= (GO, X0 et yO e o

©) 7= {(x(i),y(z))};, x® e R?, y® € R
(Problem 3): Following is data related to a kind of follower called iris. Iris has three categories, the iris-setosa, iris-versicolor, iris-
verginica. The categorization is based on the difference in length, width of sepal and petal of the flower. The data would be fed to a
machine learning algorithm and that algorithm would produce that would be used a new instance of the flower in one of the three

categories. Write the formal notation (as in question 2) for the training.

Table 0-9
Sepal Sepal Petal Petal Width
Sample#| Length Width Length cm) Species
(Cm) (Cm) (Cm)
7 3.2 4.7 14 Iris-versicolor
5.1 35 14 0.2 Iris-setosa

3 4.9 3 1.4 0.2 Iris-setosa
4 5.8 2.7 5.1 1.9 Iris-virginica
5 4.7 3.2 13 0.2 Iris-setosa
6 6.4 3.2 45 15 Iris-versicolor
7 6.9 3.1 4.9 1.5 Iris-versicolor
8 5 3.6 1.4 0.2 Iris-setosa
9 5.4 3.9 1.7 0.4 Iris-setosa
10 4.6 3.4 1.4 0.3 Iris-setosa

(Problem 4): List the feature vectors 5, 7, and 10 of the training data in problem 3 both in column and row formats. Also list the

values of x™®, x$, 2P, x® y® and y® from the table.

2 Regression based learning
Having introduced the notation and some basic terminology, we are in a position to delve deeper into the topic of regression
learning. We will discuss two regression learning methods; linear regression and logistic regression. In Section 2.1, we discuss linear

regression. Section 2.2 contains a discussion of logistic regression.

2.1 Linear Regression

In linear regression, we are given some data related to some independent variables (these variables represent features) together
with one or more dependent variables (these variables represent the target). For example, in the Shoe-size example, height and chest
size are dependent variables (features) and shoe-size is the dependent variable because our feelings are that shoes size of a person can
be determined/predicted from height and chest-size of the person. In the terminology of statistics, the independent variables are called
explanatory variables and the dependent variable is called the response variable. If the number of explanatory variables is one, the
regression is called simple linear regression and if it is more than one, the regression is called multiple linear regression In case, there
are more than one response variables in the model, the regression is called multivariate regression.

Linear regression is the problem of finding a linear relationship between the explanatory and response variable (i.e., fitting a linear
model to the data). Stated more formally,

= Simple linear regression is the problem of finding a linear function f: R —» R, x = f(x, wy, w;)
= Multiple repression is the problem of finding a linear function, f: R™ = R, x = f (X, X5, ..., Xn, Wg, Wy, Wy, ..., Wy,)
= Multivariate regression is the problem of finding a linear model, f: R™ -» R™ , x = [f; f5 ... finlT Where
o fi= filxy, ., Xp, W10, W11, oo, Wip)
o fo2 = f2(x1, e, Xn, Wao, Wa1, o, Wap)
o andsoon.
The aim is to find a model such that it is the best-fit to the given data. The symbols, wgy, w;, wy4, ... are called the parameters of the

model. The actual task in the regression problem consists in finding appropriate values for the model parameters, wy, wy, ...

2.1.1 Solving a multiple linear regression problem

In mathematical terms, simple linear regression is equivalent to finding a function f: R™ — R.

» Letourdatasetbe T = {(x@,y®)}" x® e R* y' € R

= We want to derive from the dataset a predictor of the formy® = w, + wle) + wzxéi) + -+ wnx,(f) =wp + Xio1 ijj(j)
that describes the data as accurately as possible. This means that given an x® € 7, i = 1,2, ..., m, the predicted value of @ is
as close to the target value y®as possible.

The actual task in deriving the model 7@ is learning the parameters wy, w, ..., w,,. This can be done in two ways. In the analytical
method, values of the parameters (i.e., wy, wy, ..., w,,) are determined algebraically. This involves solving a system of simultaneous
equations. The problem with this method is that a large number of parameters would result in a large number of equations and solving
S0 many equations becomes unwieldy. Alternatively, the gradient-descent method is used. The gradient-descent method is an iterative
method that finds values for parameters numerically. Both methods make use of a rule called least mean square (LMS) heuristic. We
focus on the gradient-descent based method here. First, we discuss the application of this method in a generic setting, which would
then be followed by a concrete example.

The training set 7 in table form is given in Figure 2-1. To simplify notation, we introduce the variable xéi) in the dataset (see Table

on the right) and set its value to the constant 1. This enables us to write $© = w, + X7, wij(i) as 90 =31, wjxfi). We proceed as

follows.

Table 2-1 Table 2-2
xél) xil) xél) x?El) xr(lz) y(i) 4 o H;:I(?)ht C:(ei:)st Shc})}e(size
1 2
1 1 x(l) x(l) x(l) x(l) (€D)
1 2 € n y 1 1 72.1 38.0 10.0
() () (2)) 2
2 1 X1 X3 X3 Xn y® 2 1 69.0 37.6 8.20
3 1 x1(3) x§3) x§3) x,(f) y® 3 1 70.3 37.3 8.5
4 1 72.2 38.1 95
7 1 x 1(m) x gm) e ?Em) P r(lm) y (m)

Figure 2-1

(1) The predictor: We want to derive from the given training | (1) The predictor in this case is,
data a predictor of the form _ @ @ .
9D = woxg”? + wyx” + wyx®

9D = wox® + wyx® + o 4+ WP (2-1) Using linear algebra notation,

Using linear algebra notation, the above equation can be

itt tl the dot product of th t x(()i)
written more compactly as the aot proauct or the vectors, ; ;
pactly P w = [wo wy w,] and x@ = xi‘)

X

0 0
w = [wy Wy ... w,] and x® = Xéf))
x,(li))A’(i) = [wp wy wy] xf‘) =wT. x®

Ne

)

Defining the error of prediction: For any vector x®, the
actual or observed value of the target is y® and the
predicted value is @ (calculated from equation (2.1) or
(2.2). We want $@ to be as close to y© as possible. The
discrepancy between y® and $@ is called the empirical
loss or error of prediction and is denoted as I(y®,9®).
There are many ways to measure it. One common way is to
define it as the squared difference between y® and @,
ie.,

I(y®,5®) = (y@ — y(i))z_

This is summed over all the training examples in the dataset
and a mean of the squared error is defined as,

m

1 N2

E(w) = m E (y® — W)
i=1

E(w) is also called the error function or the loss function.
Here, the total loss would be defined as,

1v] N2
Ew) =3) (9 -99) (29
i=1

(2) The squared error in this case is,
4
1 . .
Ew) = EZ:(y(l) - 5‘,(1))2
i=1

1] @ - 9®) + (y@ — 5@)
2 +(y® — 9®@) 4 (y@ — 9@)

where
10.0
8 20
y(Z)
(3)
y(4)
$D $@ $3 and $® are calculated from
99 = wexl® + wix? 4+ w,x®@
For example,
1
PO = [wo wy wy]|72.1
38.0

=wy + 72.1w; + 38w,

Of course, values of w,, wy, and w; have to be determined
first.

3)

Minimizing the error of prediction: E(w) is called the
error of prediction or empirical risk and represents the error
of prediction incurred for all the training examples in the
dataset. For the predictor @ = wT.x® to be correct,
E(w) should be minimum because $® and eventually
E(w) depends on w, we should choose w such that E (w) is
minimized. Thus we formulate the problem of finding
values for w as,

m
_ 1O, o a2
min E(w) == z @ -5®) (2-4)
i=1

where w* is the set of optimal weights. Optimal
weights are weights that correspond to
minimum E (w).

(3) Formulation of the problem for this training set would
become,

4
1 . a2
i == @ _ 5@
min E(w) = > E (y® —5®)
=1

(4) Findingw™: The next step is to determine the set of optimal

weights. The question is how do we determine it? By
defining the loss E (w) to be a quadratic function of weights
and as a quadratic function has one global minimum or
maximum, if we find the minimum of E(w), the weights
corresponding to the minimum would be optimal. Minima
and maxima of functions occur at the point of concavity, and
it is the point where the slope of the tangent to the graph of
the function or differential of the function becomes equal to
zero. This gives us a way to determine w* = [wg wy ... wy].

We can do this in two ways; analytically, by finding the
differential of E(w) with respect to the weight vector,
setting the differentials equal to zero, and solving the
resulting system of simultaneous equations for w*;
iteratively, by the method of gradient descent, in which we
make use of the information about the gradient of the
function to find w*. The aim here is to explain the method of
gradient descent.

The gradient of a multivariate function is the collection of its
differential with respect to each independent variable. The
differentials are called partial differentials. The gradient of
E(w) would be given by,

dE (w)
dw

dE (w)

V,E(w) =

d |
Wn
J0E(w) OFE (W)
adw,

6E(W)

owy,

o (2-5)

(4) The gradient of the loss function for the given data
would be as follows.
dE (w)
dw
dE (w)

[
w2

3 [aE (w) 0E(w) 0E(Ww)

V,E(w) =

aw, adw, ow,

See the figure below. Assume our model were, @ = wq +

wle), then E would be dependent on wy, and wjy. Its

minimum would occur at the bottom point of the parabola
shape where wy, = wg and wy = wy.

E(w)

Figure 2-2

()

The method of gradient descent: The gradient descent
method is guided by the insight that E(w) being a quadratic
function has a graph that opens up and is a parabola. Its
minimum occurs when w = w*. If we move away from w*,
the gradient increases and if we move towards w*, the
gradient (i.e., slope) decreases. Thus if we start with some
random values for w but update w such that it takes us
towards w*, we would find w*, optimal values for w where
E(w) is minimum. This enables us to use a weight update
rule to find w™.

whext — y,prev _ UVEW(W)
where wVe*t is the value of the weight vector in the next

iteration and wP"®" is its value in the previous iteration. We
can write the above in the expanded form as,

(5) The gradients

dE(w) 9E(w) O9OE(w) .
ow ' aws ' ow, are found by applying the

chain rule of differentiation. The process is explained for
aE‘iW). For the other two differentials, the same process is
0

applied.

4

ad |1 . N2
=__E @) _ 5@
0w0[2__ (y Y)]

210

JdE(w)
aWO

[@ _ y(l)]

@

- >< ZZ(y(z) —®)

Because, @ = w, x(l) +wyx; + szgl)

5 oy @
= Z(ym —5®) T [~wor® — wyx® — w,x]

next
next
next

[0E (W)
aw,
dE(w)
ow,
9E (w)
| dw,, |

prev
prue
prev

In the form of individual equations, we can write the

above as,

_ prev _ OE(w)
0 1 dwg

_ prev _ OE (w)
1 1 owy

_ prev _ OE (w)
n ow,

The individual differentials can be found as follows.

0E (W)
aw,

Z(y(‘) — @)’

6W

Applying the chain rule of differentiation,

6E(W)

Likewise,

0E (W)

0E (W)
ow,

Z(y(o 90)x®

Z(y(‘) 7O

Z(y(‘) §)

Putting in the above equations, our weight update

rules are
m
. e i
W(r)zext _ Wg?re” +7 Z(y(l) _ y(l))x(())
i=1
m
Wlnext — Wlpre” +7 Z(y(i) _ y(i))xf)
i=1
‘m
W.,’{Lem _ W_{ZI’TEV +7 Z(y(l) fl(l))x(l)

JE(w)
aWO

It should be noted that ai%[woxé”+w1x§°+w2xz”] =x{" because
we are performing differentiation with respect to wy. In similar

way,

JE(w)
an

JE(w)
aWZ

4
_Z(y(i) — 90) x®
i=1

4
_ Z(y(t) — 90) x®
i=1

4
_ Z(y(t) — 90) D
i=1

Our weight update rules take the following form.

next

next

W;lext

4
=W+) (y© = 9©)
i=1

=w,

prev+n2(y(o §©) x®

prev

47 Z(y(z) — 90) D
i=1

In vector form, this can be written as,

next

Wo

next

Wi

next

%)

- 4

> 5059

i=1

> 5059
i=1

4
Z(y(z) — §©))
-i=1

prev

Wo
prve

wy +7n
prev
2

2.2 The gradient descent algorithm

Having developed the theory, we are now in a position to give the gradient descent algorithm. The algorithm given here is a variant
of gradient descent algorithm called the stochastic gradient descent. Another variant of gradient descent algorithm is the batch gradient

descent that would be discussed later.

QE(W) OJE(W)

is larger
dwg aw, B

Gradient, V,, E(w) = [

3

W, .

forw? = [g --s0 also is E(w?) the largest.
Wi

E(w)

QE(W) JE(W)
awg dwy

2
forw? = [W‘;] --so also is E(w?) .
Wi

Gradient, V,E(W) = [is getting smaller

EW)

Wo
n OE(wW) JE(W) L
Gradient, V,,E(w) = % aTw becomes 0 Gradient, i.e., the slope, of the error surface
wg ° ! decreases as we go from w? towards w*. At w*
forw” = [W1~] -- E(w") is minimum . it becomes equal to zero. Likewise, E(w) also decreases
and at w'it is minimum
W, &
-
. w? = 0
« _ [Wo w?
w'=| | 1 -~
wy Cd
1 W(} Gradient increases and so also does E(w)
=11 as we move away from w*
W1
Figure 2-3

Algorithm: The Gradient Descent Algorithm
o The weights are and learning rates are
Inputs The training set; X, the feature vector, Y, the vector of target values initialized to some random values. The value
of learning rate is typically set at some value

Outputs The weights, wy, wy, ..., wy, between 0 and 1

o . . The while loop is called the training loop. It
Initialize weights, wy, wy, ..., w, and learning rate may be executed a fixed number of times or
Set the someThresholdValue may be terminated when a certain condition,
e.g., when the gradient approaches zero or the
error of prediction reaches a threshold value.

WHILE (gradient > someThresholdValue) DO Each execution of the while loop is called an
FOR each training example DO epoch.
Compute y(i) — Woxéi) + W1x1(i) ot xr(li) Let_ 0.1, 0.5, 0.23 be the _initial values of
weights and 0.1 be the learning rate, then for
Compute the gradients 6E(W), aE(W), - 9EW) the _15‘_ training examplg o_f our shoe size
owg © dwy own prediction problem, @ is calculated as
. follows.
Update each weight, w/*** = w/™*" — %, i=12,..,n
J
Compute ¥, E(w) and aggregate over the training examples W =01x1+05x72+0.25x37
Calculations of other @, i = 2, 3, 4 is done
END FOR similarly. These are used in the calculation o
END WHILE gradients, %1 = 1,...4, which are used
]
Output wg, wy, ..., wy to update weights.

RETURN

Practice Problems

In gradient descent algorithm, gradient of the error function (i.e. E(w)) is found using the chain rule of differentiation. The chain
rule of differentiation works for functions of the form, z = f(u) and u = g(x, x5, ..., x,,). In this, the function f depends on the
variable u and u = g(xy, x5, ..., x,,) in turn depends on variables x;, x,,..., and x,,. g is called the inner function and f, the outer

function. The differentiation rule is as follows.

v dz du dz du _dz [au Ju by Ju
WS W T dudmy x - o]t dulox, ox ox, (2-6)
Example 1: Consider the following function.
1
(xf +x7 +x5)2
We want to differentiate this with respect to x = [x; x, -+ X3]7. To apply the chain rule, let u = g([x; x, - X3]7) =
1
x? + x2 + x2. Then z = uz. Now we apply the chain rule as in (2-6).
v _dz du dz du _dz [6u du OJu
W2 T A T dudpy xp - x]T dulox ox, 9

dr1i a d a
=£[u2].[a—xl(x12+x22+x32,)+E(x12+x22+x§)+a—xE(x12+x22+x§)]
1

1
=§u'5.[(2x1+0+0)+0+(0+2x2+0)+(0+0+2x3)]

(g + x4 x3)
Problem 1: Perform the following differentiation.
(1) (Vxg + x3)3, differentiate wrt x;and x,
(2) sin u%, where u = ng +w? + §W3 + 3w?, differentiate wrt w = [w; w, wy w,]7
(3) cos (sin(6; + %92)), differentiate wrt 6 = [gﬂ

(4) e where u = x, + 5v/x;, differentiate wrt x = [;Cﬂ

Problem 1: In linear, the form of the error function is E(w) = %Zlf’;l(y(") -)7(‘))2. We found its gradient by differentiating with
respect to the weight vector. This can also be written as E(9®) =§ m®- y@)z because $© = wox{® + wyx® + - +

w,x where xP = 1. Then differentiating E(9®) with respect to the weight vector w = [w, w; ...w,]” can be represented as
n+tn 0 y 0 n

dE _ dE d9®
dw dp® aw

. There are other definitions of the error function as well. Some are listed below. Find the gradient of these functions

® O]

® + waxz .

with respect to weights assuming $© = wy + wyx;” + w,x,

N Al 1 ENONG!
(DEQ“J”%ﬂEEL%Q+eyy)
AN _,@Ds0)
) E(y®,90)=3r,e>"?

2.2.1 Stochastic gradient descent verses batch gradient

The algorithm given in Figure 2-3 is a variant of gradient descent called the stochastic gradient descent algorithm (abbreviated as
SGD). Another variant of gradient descent algorithm is the batch gradient descent algorithm (BGD). The difference between the two

varieties of the gradient descent is in the mode of computing the gradient and the time of weight update. In stochastic gradient descent,
the weight-update is performed per training example, which means that the weights are updated immediately after the gradient is
calculated. In the batch mode, the gradient values for all the training examples are aggregated first and then the weight-update is
performed. Therefore, there is one weight-update operation per training cycle. This is indicated by the inclusion of the weight update
operation inside the inner loop (i.e., the for loop) in Figure 2-3 and the outer loop (i.e., the while loop) in Figure 2-4. Another, version
of gradient descent algorithm that is popular in neural network applications is the mini-batch gradient-descent algorithm, which
divides the training set into fixed-sized groups of training examples called mini-batches and applies the weight-update on a mini-batch
basis. In later section, we would describe the strengths and weaknesses of these various approaches to implementing the gradient

algorithm.

j=01,2,..,n

WHILE (gradient > someThresholdValue) Do It should be noted that the gradient is
aggregated for each weight, wy, wy,
gSum; =0 W,,...,w,, separately as indicated by the
FOR each training example DO use of index j = 0,1,..,n.

Likewise, the update is applied to each

J0E(w) SR
gSum; = gSum; + o, weight individually.
END FOR
wiert = ijprev —n X gSum;
END WHILE

Figure 2-4

