
 

Module II Regression Based Learning 

1 Introduction 
 

In Figure 1-1 is illustrated the layout of a typical machine learning environment. The three main concepts involved in the 

representation of the environment are the data, which in the machine learning jargon is called the training set or training data, a 

machine learning algorithms whose task is to derive a model of the data contained in the training set, and the model itself. The training 

set is typically in the form of a table with data organized into columns and rows. The data may be labeled or unlabeled depending on 

the type of learning used (as supervised or unsupervised learning). The machine learning algorithm component may be one of the 

wide range of algorithms available in literature. The model produced by the algorithm is an abstract representation of the data in the 

training set. It may be in the form of a mathematical equation or formula or a set of association rules. In this learning module, we 

focus on a supervised machine learning methodology called regression. In particular, we would discuss two common regression 

learning methods, i.e., linear and logistic regressions at length. We would also introduce the gradient descent algorithm and least mean 

square (LMS) rule, two important concepts in error-correction based learning. In the subsequent section, we would introduce the 

notation used in these lecture notes whose understanding would be useful in grasping the explanations later. 

 

Figure 0-1 A Machine learning environment 

1.1 The training set and its notation 

In most machine learning settings, a training set is a rectangular arrangement or table of values. Each row in the table is called a 

training example or a training sample. If the learning mode is supervised, a training example comprises of two components; a vector 

of input values called the feature vector; and one or more output values called the target or observed values. Each feature vector is a 

finite list of ordered values and each value is a measure of some feature of the pattern under observation. The output value is either a 

real number or some discrete value representing a category or class (depending on whether we are dealing with the regression or 

classification problem). Table 1 in Figure 0-1 gives an illustration of the structure of the training set. 

The training data in Table 1 has   training examples numbered 1 through  . Each training example consists of a  ( ) component, 

which represents the feature vector and a  ( ) component, which is the target or output value for that feature vector. The index   

(         ) in the superscript position denotes the training example number. For example,  ( ) means the feature vector of the 

   training example and  ( ) the output value for the    training example. Each feature vector has   values and each value is denoted 

by the notation   
( )

 with           in the subscript position representing the feature number. See Figure  0-1.  



 

Table 0-1 

training 

example#   
( )

   
( )

   
( )

 
.

..   
( )

  ( ) 

1   
( )

   
( )

   
( )

     
( )

  
( ) 

2   
( )

   
( )

   
( )

     
( )

  
( ) 

3   
( )

   
( )

   
( )

     
( )

  
( ) 

… … … … … … … 

    
( )

   
( )

   
( )

     
( )

  
( ) 

 

 ( )  

[
 
 
 
 
 
 
   
( )

  
( )

  
( )

 
 
 

  
( )
]
 
 
 
 
 
 
 

 

  
( )

 means feature 1 of 

feature vector 1,   
( )

 feature 

2 of feature vector 1, and so 

on.  ( )means the target or 

output for  ( ) 

 ( )  

[
 
 
 
 
 
 
   
( )

  
( )

  
( )

 
 
 

  
( )
]
 
 
 
 
 
 
 

 

  
( )

 means feature 1 of 

feature vector 3,   
( )

 feature 

2 of feature vector 3, and so 

on. ( )means the target or output 

for  ( ). 

Figure 0-2 Structure of the training data 

In the figure above, the vectors  ( ) and  ( ) have been given in column notation. When inside text, vectors  ( ) and  ( ) can also 

be written as row vectors. For example,  ( ) can be written as  ( )  ,  
( )   

( )      
( )-  and  ( ) as  ( )  ,  

( )   
( )      

( )-   . The 

row vector notation has the advantage that contrary to column vector notation, vectors in row notation do not stretch over multiple 

lines of text and, thus, the required amount of spacing between lines is preserved. Having introduced the basic notation above, we are 

now in a position to introduce the formal notation for specifying training the training set in these lecture notes.  

A training data in these notes would be formally specified as follows. 

 Let   *( ( )  ( ))}
   

 
,  ( )    ,  ( )    

The above notation means, there are   training examples, each comprising of a feature vector of   real values and a target of one 

real value. In mathematical jargon, we say the vector   ( ) takes its value from a domain that is the Cartesian product of   real sets. For 

 ( ), we say that it takes its values from the real number set. We would also be using the notation, e.g., we will use        to 

denote the matrix of feature vectors in the training data and      the vector of target values. See Figure 0-2.  
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Example 1. The Breast Cancer Example  

 

Consider a doctor or consortium of doctors examining patients for the diagnoses of breast cancer. The cancer arises as a tumor but 

not all tumors are cancers and the doctor has to carefully examine the physical attributes of a tumor to classify it as either malignant 

(cancer-causing and harmless) or benign (non-cancer causing and harmless). Assume that the doctor uses five attributes of the tumor 

to decide whether the tumor is malignant or benign. These attributes are the mean radius, mean texture, mean area, mean diameter, and 

fractal dimension of a tumor. Assume performing diagnostic on 6 patients, the doctor comes to have the following table of data (Table 

2, Figure 0-3) along with the diagnostic. The data has more formally been represented in Table 3. The symbol    denotes the feature 

“mean radius” of the tumor,   , the “mean texture”, and so on.  ( )  [  
( )    

( )  
( )  
( )  
( )
]
 
 ,                              -  is the data 

related to patient 1 represented as a row vector,  ( )  [  
( )    

( )  
( )  
( )  
( )
]
 
 ,                             -  data related to patient 2, and so 



on.  ( ) represents the diagnostic result for a patient with “0” denoting a “benign” tumor and “1” a “malignant” tumor. For example, 

 ( ) denotes the diagnostic result for patient 1, which is 0,  ( ) denotes the diagnostic result of patient 3, which is 1 and so on. 

 

We will denote this training data as   *( ( )  ( ))}
   

 
,  ( )    ,  ( )  *   +, which means there are 6 training examples and each 

training example is comprised of a feature vector and a target value.  

 

Table 0-3 

patient 

# 

Mean 

radius 

Mean 

texture 

Mean  

area 

Mean 

perimeter 

Fractal 

dimension 
Diagnostic 

1 17.90 10.4 12.3 26.54 0.12 benign 

2 20.56 17.8 13.3 18.6 0.08 benign 

3 19.60 21.2 13.0 24.3 0.08 malignant 

4 15.50 18.6 13.0 23.4 0.09 benign 

5 7.70 24.5 47.8 0.00 0.07 malignant 

6 8.60 20.1 10.5 12.7 013 benign 
 

Table 0-4 

Training 

example 
  
( )

   
( )

   
( )

   
( )

   
( )

  ( ) 

( ( )  ( )) 17.90 10.4 12.3 26.54 0.12 0 

( ( )  ( )) 20.56 17.8 13.3 18.6 0.08 0 

( ( )  ( )) 19.60 21.2 13.0 24.3 0.08 1 

( ( )  ( )) 15.50 18.6 13.0 2.4 0.09 0 

( ( )   ) 7.70 24.5 47.8 0.00 0.07 1 

( ( )  ( )) 8.60 20.1 10.5 12.7 0.13 0 
 

Figure 0-3 

The notation  ( )     means that a vector is a 5-tuple of real numbers (a 5-tuple is an ordered list of five values). The expression 

 ( )  *   + means that the target value can either be 1 or 0. The vectors can also be listed as column vectors. For example, the 

column-format representation of vectors  ( ) and  ( ) is as below. 
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Example 2: The Shoe Size Example  

 

Assume that you are interested to find whether shoes size of people can be predicted from their heights and chest size. You take 

measurement of a few people and record the findings in the following table. The number of training examples (i.e.,  ) for this 

problem is 4, (i.e.,    ). The number of features, i.e.,  , is 4 (i.e.,   ). 

  

Table 0-5 

Person# Height Chest Shoe size 

1 72.1 38.0 10.0 

2 69.0 37.6 8.20 

3 70.3 37.3 8.5 

4 72.2 38.1 9.5 
 

Table 0-6 

Training example   
( )

   
( )

  ( ) 

( ( )  ( )) 72.1 38.0 10.0 

( ( )  ( )) 69.0 37.6 8.20 

( ( )  ( )) 70.3 37.3 8.5 

( ( )  ( )) 72.2 38.1 9.5 
 

Figure 0-4 

The notation for this data would be, 
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Practice Problems  

 

(Problem 1):  Write mathematical notation for the training sets in the following tables. List vectors 2
nd

 and 4
th

 in each case.   
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(Problem 2): Express the following notation training data in the form of tables. 

(a)   {( ( )  ( ))}
   

 
  ( )    ,  ( )    

(b)   {( ( )  ( ))}
   

 
   ( )    ,  ( )  ,   - 

(c)   {( ( )  ( ))}
   

 
   ( )    ,  ( )     

 

(Problem 3): Following is data related to a kind of follower called iris. Iris has three categories, the iris-setosa, iris-versicolor, iris-

verginica.  The categorization is based on the difference in length, width of sepal and petal of the flower. The data would be fed to a 

machine learning algorithm and that algorithm would produce that would be used a new instance of the flower in one of the three 

categories. Write the formal notation (as in question 2) for the training. 

 

Table 0-9 

Sample # 

Sepal  

Length  

(Cm) 

Sepal  

Width  

(Cm) 

Petal  

Length  

(Cm) 

Petal Width  

(Cm) 
Species 

1 7 3.2 4.7 1.4 Iris-versicolor 

2 5.1 3.5 1.4 0.2 Iris-setosa 



3 4.9 3 1.4 0.2 Iris-setosa 

4 5.8 2.7 5.1 1.9 Iris-virginica 

5 4.7 3.2 1.3 0.2 Iris-setosa 

6 6.4 3.2 4.5 1.5 Iris-versicolor 

7 6.9 3.1 4.9 1.5 Iris-versicolor 

8 5 3.6 1.4 0.2 Iris-setosa 

9 5.4 3.9 1.7 0.4 Iris-setosa 

10 4.6 3.4 1.4 0.3 Iris-setosa 

 

(Problem 4): List the feature vectors 5, 7, and 10 of the training data in problem 3 both in column and row formats. Also list the 

values of   
( )

,    
( )

,   
( )

,   
( )

,  ( ), and  ( ) from the table.  

2 Regression based learning 

Having introduced the notation and some basic terminology, we are in a position to delve deeper into the topic of regression 

learning. We will discuss two regression learning methods; linear regression and logistic regression. In Section 2.1, we discuss linear 

regression. Section 2.2 contains a discussion of logistic regression. 

2.1 Linear Regression 

In linear regression, we are given some data related to some independent variables (these variables represent features) together 

with one or more dependent variables (these variables represent the target ). For example, in the Shoe-size example, height and chest 

size are dependent variables (features) and shoe-size is the dependent variable because our feelings are that shoes size of a person can 

be determined/predicted from height and chest-size of the person. In the terminology of statistics, the independent variables are called 

explanatory variables and the dependent variable is called the response variable.  If the number of explanatory variables is one, the 

regression is called simple linear regression and if it is more than one, the regression is called multiple linear regression In case, there 

are more than one response variables in the model, the regression is called multivariate regression.  

Linear regression is the problem of finding a linear relationship between the explanatory and response variable (i.e., fitting a linear 

model to the data). Stated more formally,  

 Simple linear regression is the problem of finding a linear function          (       ) 
 Multiple repression is the problem of finding a linear function,        ,    (                        )   
 Multivariate regression is the problem of finding a linear model,         ,   ,          -

  where 

o      (                     ) 
o      (                     ) 
o and so on. 

The aim is to find a model such that it is the best-fit to the given data. The symbols    ,   ,    , … are called the parameters of the 

model. The actual task in the regression problem consists in finding appropriate values for the model parameters,   ,   , …    

2.1.1 Solving a multiple linear regression problem 

In mathematical terms, simple linear regression is equivalent to finding a function       .  

 Let our dataset be   {( ( )  ( ))}
   

 
,  ( )    ,       

 We want to derive from the dataset a predictor of the form  ̂( )         
( )      

( )        
( )     ∑     

( ) 
    

that describes the data as accurately as possible. This means that given an  ( )   ,          , the predicted value of  ̂( ) is 

as close to the target value  ( )as possible.   

 

 



The actual task in deriving the model  ̂( ) is learning the parameters           . This can be done in two ways. In the analytical 

method, values of the parameters (i.e.,           ) are determined algebraically.  This involves solving a system of simultaneous 

equations. The problem with this method is that a large number of parameters would result in a large number of equations and solving 

so many equations becomes unwieldy. Alternatively, the gradient-descent method is used. The gradient-descent method is an iterative 

method that finds values for parameters numerically. Both methods make use of a rule called least mean square (LMS) heuristic. We 

focus on the gradient-descent based method here. First, we discuss the application of this method in a generic setting, which would 

then be followed by a concrete example. 

The training set   in table form is given in Figure 2-1. To simplify notation, we introduce the variable   
( )

 in the dataset (see Table 

on the right) and set its value to the constant 1. This enables us to write  ̂( )     ∑     
( ) 

    as   ̂( )  ∑     
( ) 

   . We proceed as 

follows. 
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Table 2-2 

#   
( )

 
Height 

  
( )

 

Chest 

  
( )

 

Shoe size 

 ( ) 

1 1 72.1 38.0 10.0 

2 1 69.0 37.6 8.20 

3 1 70.3 37.3 8.5 

4 1 72.2 38.1 9.5 
 

Figure 2-1 

(1) The predictor: We want to derive from the given training 

data a predictor of the form  
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(1) The predictor in this case is, 
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Using linear algebra notation, 
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(2) Defining the error of prediction: For any vector  ( ), the 

actual or observed value of the target is  ( ) and the 

predicted value is  ̂( ) (calculated from equation (2.1) or 

(2.2). We want  ̂( ) to be as close to  ( ) as possible. The 

discrepancy between  ( ) and  ̂( ) is called the empirical 

loss or error of prediction and is denoted as  ( ( )  ̂( )). 
There are many ways to measure it. One common way is to 

define it as the squared difference between  ( ) and  ̂( ), 
i.e., 
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This is summed over all the training examples in the dataset 

and a mean of the squared error is defined as, 
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 ( ) is also called the error function or the loss function. 

Here, the total loss would be defined as, 
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Of course, values of        and    have to be determined 

first. 
 

(3) Minimizing the error of prediction:  ( ) is called the 

error of prediction or empirical risk and represents the error 

of prediction incurred for all the training examples in the 

dataset. For the predictor  ̂( )      ( ) to be correct, 

 ( ) should be minimum because  ̂( ) and eventually 

 ( ) depends on  , we should choose   such that  ( ) is 

minimized. Thus we formulate the problem of finding 

values for   as, 
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where    is the set of optimal weights. Optimal 
weights are weights that correspond to 
minimum  ( ).  

 

(3) Formulation of the problem for this training set would 

become, 
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(4) Finding  : The next step is to determine the set of optimal 

weights. The question is how do we determine it? By 

defining the loss  ( ) to be a quadratic function of weights 

and as a quadratic function has one global minimum or 

maximum, if we find the minimum of  ( ), the weights 

corresponding to the minimum would be optimal. Minima 

and maxima of functions occur at the point of concavity, and 

it is the point where the slope of the tangent to the graph of 

the function or differential of the function becomes equal to 

zero. This gives us a way to determine    ,  
    
    

 -.  
 

We can do this in two ways; analytically, by finding the 

differential of  ( ) with respect to the weight vector, 

setting the differentials equal to zero, and solving the 

resulting system of simultaneous equations for   ; 
iteratively, by the method of gradient descent, in which we 

make use of the information about the gradient of the 

function to find   . The aim here is to explain the method of 

gradient descent. 

 

The gradient of a multivariate function is the collection of its 

differential with respect to each independent variable. The 

differentials are called partial differentials. The gradient of 
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(4) The gradient of the loss function for the given data 

would be as follows. 
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Figure 2-2 

                ( )  

(5) The method of gradient descent: The gradient descent 

method is guided by the insight that  ( ) being a quadratic 

function has a graph that opens up and is a parabola. Its 

minimum occurs when     . If we move away from   , 
the gradient increases and if we move towards   , the 

gradient (i.e., slope) decreases. Thus if we start with some 

random values for   but update   such that it takes us 

towards   , we would find   , optimal values for   where 

 ( ) is minimum. This enables us to use a weight update 

rule to find   . 
 

 

where       is the value of the weight vector in the next 

iteration and       is its value in the previous iteration. We 

can write the above in the expanded form as, 
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applied. 
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In the form of individual equations, we can write the 

above as, 

 

 

 

The individual differentials can be found as follows. 
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Putting in the above equations, our weight update 
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we are performing differentiation with respect to   . In similar 

way,  
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Our weight update rules take the following form. 
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In vector form, this can be written as, 

 

 



2.2 The gradient descent algorithm 

Having developed the theory, we are now in a position to give the gradient descent algorithm. The algorithm given here is a variant 

of gradient descent algorithm called the stochastic gradient descent. Another variant of gradient descent algorithm is the batch gradient 

descent that would be discussed later.  

 

 

Figure 2-3 

 

 

 

Algorithm: The Gradient Descent Algorithm 

Inputs The training set; X, the feature vector, Y, the vector of target values 

Outputs The weights,   ,   , …,     

 

Initialize weights,   ,   , …,    and learning rate   
Set the someThresholdValue 

 

WHILE (gradient > someThresholdValue) DO 

 FOR each training example DO 

 Compute  ̂( )      
( )      

( )      
( )

 

 Compute the gradients 
  ( )

   
, 
  ( )

   
, …, 

  ( )

   
 

 Update each weight,   
       

    
  

  ( )

   
,           

 Compute    ( ) and aggregate over the training examples 

 END FOR 

END WHILE 

Output   ,   , …,    

RETURN 
 

 

 

The weights are and learning rates are 

initialized to some random values. The value 

of learning rate is typically set at some value 

between 0 and 1.  

 

The while loop is called the training loop. It 

may be executed a fixed number of times or 

may be terminated when a certain condition, 

e.g., when the gradient approaches zero or the 

error of prediction reaches a threshold value. 

Each execution of the while loop is called an 

epoch. 

 

Let 0.1, 0.5, 0.23 be the initial values of 

weights and 0.1 be the learning rate, then for 

the 1st training example of our shoe size 

prediction problem,  ̂( ) is calculated as 

follows. 

 

 ̂( )                       

Calculations of other  ̂( ),    , 3, 4 is done 

similarly. These are used in the calculation o 

gradients, 
  ( )

   
       , which are used 

to update weights. 

 
 

 

 



Practice Problems  

 

In gradient descent algorithm, gradient of the error function (i.e.   ( ) ) is found using the chain rule of differentiation. The chain 

rule of differentiation works for functions of the form,    ( ) and    (          ). In this, the function   depends on the 

variable   and    (          ) in turn depends on variables   ,   , , and   .   is called the inner function and  , the outer 

function. The differentiation rule is as follows. 
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Example 1: Consider the following function. 

(  
    

    
 )
 
  

We want to differentiate this with respect to   ,       -
 . To apply the chain rule, let    (,       -

 )  

  
    

    
 . Then    

 

 . Now we apply the chain rule as in (2-6). 
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Problem 1: Perform the following differentiation. 

(1) (√     
 ) , differentiate wrt   and    

(2)     
 

 , where     

 

    
  

 

 
     

 , differentiate wrt   ,           -
  

(3)    (   (   
 

 
  )), differentiate wrt   [
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(4)     where       √  , differentiate wrt   0
  
  
1 

 
 

Problem 1: In linear, the form of the error function is  ( )  
 

 
∑ ( ( )   ̂( ))

  
     We found its gradient by differentiating with 

respect to the weight vector. This can also be written as  ( ̂( ))  
 

 
∑ ( ( )   ̂( ))

  
    because  ̂( )      

( )      
( )    

    
( )

 where   
( )   . Then differentiating  ( ̂( )) with respect to the weight vector   ,        -

  can be represented as 

  

  
 
  

  ̂( )
  ̂( )

  
. There are other definitions of the error function as well. Some are listed below. Find the gradient of these functions 

with respect to weights assuming  ̂( )         
( )      

( )      
( )

. 

(1)  ( ( )  ̂( ))  
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2.2.1 Stochastic gradient descent verses batch gradient 

 

The algorithm given in Figure 2-3 is a variant of gradient descent called the stochastic gradient descent algorithm (abbreviated as 

SGD). Another variant of gradient descent algorithm is the batch gradient descent algorithm (BGD). The difference between the two 



varieties of the gradient descent is in the mode of computing the gradient and the time of weight update. In stochastic gradient descent, 

the weight-update is performed per training example, which means that the weights are updated immediately after the gradient is 

calculated. In the batch mode, the gradient values for all the training examples are aggregated first and then the weight-update is 

performed. Therefore, there is one weight-update operation per training cycle. This is indicated by the inclusion of the weight update 

operation inside the inner loop (i.e., the for loop) in Figure 2-3 and the outer loop (i.e., the while loop) in Figure 2-4. Another, version 

of gradient descent algorithm that is popular in neural network applications is the mini-batch gradient-descent algorithm, which 

divides the training set into fixed-sized groups of training examples called mini-batches and applies the weight-update on a mini-batch 

basis.  In later section, we would describe the strengths and weaknesses of these various approaches to implementing the gradient 

algorithm.   

 

 

 

Figure 2-4 
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WHILE (gradient > someThresholdValue) Do 

 … 

         

 FOR each training example DO 

 … 

 
            

  ( )

   
 

 END FOR 

   
       

    
         

END WHILE 

 

It should be noted that the gradient is 

aggregated for each weight, 𝑤 , 𝑤 , 
𝑤 ,…,𝑤𝑛, separately as indicated by the 

use of index 𝑗         𝑛.  

 

Likewise, the update is applied to each 

weight individually. 

 



 

  



 


